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A B S T R A C T

Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to
the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models
may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the
type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance,
model error is difficult to encapsulate systematically and is often neglected. Here, model error is considered for
an important class of inverse problems that includes interpretation of hydraulic transients and contaminant
source history inference: reconstruction of a time series that has been convolved against a transfer function (i.e.,
impulse response) that is only approximately known. Using established harmonic theory along with two results
established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect
of model error on time series recovery for both well-determined and over-determined inverse problems. It is seen
that use of additional measurement locations does not improve expected performance in the face of model error.
A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is
seen informative about expected behavior. A possible diagnostic criterion for blind transfer function char-
acterization is also uncovered.

1. Introduction

Inverse analyses now form a major part of research in hydrology,
being relevant to hydraulic tomography, contaminant source identifi-
cation, and model parametrization. In the inverse problems literature, it
is common to assume a perfect model, with all divergence between
model prediction and the observed data vector attributable to “noise”
drawn from a symmetric, zero-mean probability distribution function.
This theoretical approach underlies classical regularization methods
such as Tikhonov and TSVD techniques (Hansen, 1992), and is also
typically used for specifying the likelihood function in the Bayesian
inversion paradigm (Bui-Thanh, 2012). That the approach of encoding
all errors as unbiased measurement uncertainties may not be appro-
priate in hydrologic inverse modeling has been recognized. However in
the absence of a paradigm that captures model error in a systematic
fashion, the perfect-model assumption remains common in practice
(Del Giudice et al., 2015; Lin and Beck, 2012).

The effect of model error has received some attention in recent
hydrological literature. Following the categorization of model error
research by Montanari (2007) into studies of (i) forward modeling, and

(ii) model calibration, selection, and input signal recovery, we note
more recent research appears to have been devoted to the former (e.g.,
Gupta et al., 2008; Vrugt et al., 2008; Lin and Beck, 2012; Gong et al.,
2013; Vrugt and Sadegh, 2013; White et al., 2014), with some attention
also devoted to its effect on model selection and parametrization (e.g.
Gaganis and Smith, 2001; Doherty and Welter, 2010). Systematic,
qualitative treatments of the problem of model error have been pre-
sented by Refsgaard et al. (2006) and by Gupta et al. (2012).

Current approaches to quantifying the effect of model error are ty-
pically probabilistic, treating the impact of the model uncertainty on
output with Bayesian (Krzysztofowicz, 1999) or information theoretic
(Gong et al., 2013) formalisms. The uncertainty about model structure
is commonly modeled by parameterizing the model itself as a prob-
ability distribution function (pdf) linking inputs and outputs, or as a
deterministic numerical model with pdfs defined on its state variables
(see summary in Renard et al., 2010). A number of conceptual ap-
proaches for treating model error in a theoretical framework have ap-
peared in the literature. A popular approach, originating with
Kennedy and O’Hagan (2001), works in a Bayesian framework and
treats model error as a Gaussian process whose governing parameters
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must be recovered alongside model parameters during the calibration
process. The original work was focused upon prediction, but
Brynjarsdóttir and O’Hagan (2014) have recently investigated the ap-
proach specifically in the context of parametric inference. This ap-
proach has also been generalized and applied in a water resources
context by Xu and Valocchi (2015). Bayesian approaches to model se-
lection may also specifically account for model error through the se-
lection of their likelihood term. This is done explicitly in the GLUE
approach of Beven and Binley (1992), in which the likelihood function
is selected subjectively with an eye to capturing model error. An al-
ternative Bayesian model selection approach is proposed by
Gaganis and Smith (2001). They propose a scheme in which the like-
lihood function has a uniform distribution inside a hypercube centered
around the observation vector, whose volume represents tolerable
error. Data is increasingly added to the calibration, until the probability
of all but one model (which is selected) decreases. By decreasing the
volume of the hypercube until the probability of the selected model
decreases, a measure of the misfit attributable to model error is derived.
This approach, similar to the BIC (Schwarz, 1978) and KIC
(Kashyap, 1982) model selection criteria, assumes that the true like-
lihood function is sharply peaked around the maximum likelihood
parameters. Finally, we note the approach of Doherty and
Welter (2010), White et al. (2014), and collaborators, which is to focus
on linear models and their coarse-graining into lower-dimensional
subset models. Employing the singular value decomposition and other
techniques of matrix analysis, these authors consider the impact of di-
mensionality reduction on parametrization, and on the accuracy of
prediction.

An alternative to symbolic treatment of model error is to explore its
effects numerically, using a Monte Carlo study. The approximate
Bayesian computation approach of Vrugt and Sadegh (2013) also uses a
box likelihood function similar to that of Gaganis and Smith (2001)
along with a Markov-chain Monte Carlo approach: all predictions which
generate output sufficiently close to the observation data are considered
samples from the posterior distribution. Another Monte Carlo approach,
due to Hansen and Vesselinov (2016), determines probability dis-
tributions for inferred parameters by generating an ensemble of data
with a superset model and then interpreting it with the model of in-
terest.

The current paper follows the path of treating models (and model
error) symbolically, but differs from the schemes mentioned above.
Rather than treating models as Gaussian processes or arbitrary prob-
ability distributions, they are treated as generalized Fourier series with
imperfectly known coefficients. The focus here is on a specific class of
inverse problems commonly faced by hydrologists: time series recovery
problems with a temporal convolution structure. More concretely, this
means the recovery of an input signal from one or more remote output
signal measurements, where each output signal is generated by tem-
poral convolution of the shared input signal with a unique transfer
function, which is only approximately known. Intuitively: the output
behavior at each observation location is defined by the response at the
same location to an instantaneous pulse at a remote location, and su-
perposition in time may be used to determine the output resulting from
an arbitrary transient input signal at the same input location.

Expressed symbolically, we consider problems in which we wish to
recover a transient input signal at location 0, h(0, t), which has caused a
transient output signal, h(x, t), at a remote location x, by means of the
convolution

∫= = −x x 0 x 0h t b t h t b t τ h τ dτ( , ) ( , )* ( , ) ( , ) ( , ) .
t

0 (1)

Here, b(x, t) is a Green’s function (i.e., transfer function) representing
the response to an instantaneous Dirac input signal at the origin (i.e.

=0h t δ t( , ) ( )). The convolution in Eq. (1) describes to a wide range of
problems, and applies to essentially any transient system that is gov-
erned by a linear (integro-)differential equation, such as the

groundwater flow equation or the advection-dispersion equation. Only
linearity in the dependent variable is required for this structure to de-
scribe the physics: dependence on parameters such as hydraulic con-
ductivity may be nonlinear and these parameters may be spatially
heterogeneous. Examples of hydrologic inverse problems that may be
expressed in this form include the inference of hydraulic head history at
some location of interest from available time series obtained at remote
monitoring wells, and the inference of the contaminant source history
at a given location from remotely-obtained breakthrough curves. In
both of these examples, the transfer function is the same as the impulse
response—the response to an instantaneous pulse of concentration or
head.

We quantify error with the metric ϵ, defined as the squared L2 norm
of the error of the inferred input signal, 0h t( , ),͠ relative to the true
signal, h(0, t). This is defined mathematically as

∫≡ −
∞

0 0h t h t dtϵ ( ( , ) ( , )) .͠
0

2
(2)

We are primarily interested in how ϵ is affected by error in the assumed
transfer function used in inversion relative to the true transfer function
which perfectly generates the observed output signal, although we shall
make other observations.

For inverse problems of the sort described by Eq. (1), it is shown in
Section 2 how it is possible to formally decompose the transfer
function(s) as well as the input and output signals into generalized
Fourier series. Some apparently new results concerning triangular
Toeplitz matrices are established (in Appendix A), and techniques of
matrix analysis are then employed to derive concrete bounds on the
signal reconstruction error as a function of the error in dominant
components of the transfer function(s). In Section 3, a Monte Carlo
study of hydraulic inversion is presented which contextualizes the
theoretical results shown in Section 2 and some empirical observations
that go beyond the theoretical work are noted. Section 4 summarizes
what has been learned and suggests interesting future research direc-
tions.

2. Derivation of error bounds

2.1. Laguerre expansion method

In general, for some fixed x, the input signal, transfer function, and
output signal can be expanded as generalized Fourier series in a basis of
Laguerre functions, ϕn( · ) (n≥ 0). Each Laguerre function is defined
according to the formula:

= −ϕ t e
n

d
dt

e t( )
!

( ),n

n

n
t n

t
2

(3)

and together they form an orthonormal basis on [0, ∞) (Abate et al.,
1996). This means that any well-behaved function defined on [0, ∞)
can be expressed as an infinite series of Laguerre functions and ap-
proximated by a finite series. The significance from our point of view is
that arbitrary functions can be expressed as finite-length vectors (con-
taining the coefficient of each function in the finite-length Laguerre
series expansion). We write the Laguerre series expansions for, re-
spectively, the input signal, a transfer function, and an output signal in
Eq. (1) as follows:

∑= ⎛
⎝

⎞
⎠

0h t a ϕ t
T

( , ) ,
n

n n
(4)

∑= ⎛
⎝

⎞
⎠

xb t b ϕ t
T

( , ) ,
n

n n
(5)

∑= ⎛
⎝

⎞
⎠

xh t c ϕ t
T

( , ) .
n

n n
(6)

Here, T is a characteristic time of the problem, chosen to accelerate
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convergence of the infinite series (regardless of the choice of T, the
infinite series converge). Let c be a vector of N Laguerre coefficients,
such that its n-th entry, = ccn n. Similarly, define a to be a vector of N
Laguerre coefficients, such that = aan n. It has been shown (Hansen and
Kueper, 2009) that, in general, these vectors of coefficients can be re-
lated by the matrix operation

=c Ba, (7)

where B is the following lower triangular Toeplitz (LTT) matrix:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⋯
− ⋯
− − ⋯
⋮ ⋮ ⋮ ⋱ ⋮
− − − ⋯

⎤

⎦

⎥
⎥
⎥
⎥
⎥− − − − − −

T

b
b b b
b b b b b

b b b b b b b

B

0 0 0
0 0

0 .

N N N N N N

0

1 0 0

2 1 1 0 0

1 2 2 3 3 4 0 (8)

We have now converted the convolution inverse problem into a matrix
inverse problem, involving a matrix with a large amount of structure;
we will employ this structure to place bounds on the inversion error of
the original convolution problem. Because B is a full-rank square ma-
trix, if it is known perfectly then inversion is well defined (although not
necessarily numerically stable):

=−B c a.1 (9)

To continue the analysis of the this section, we need to establish two
properties of LTT matrices, which may not be of interest to practically-
oriented readers. This analysis is presented in Appendix A.

2.2. Effect of imperfect model: single observation location

We now consider the core problem, the impact of model error on
signal inference, in the simplest case: that of a single output signal.
Assume perfect knowledge of output signal h(x, t), but imperfect
knowledge of transfer function b(x, t), and a need to infer input signal
h(0, t). The imperfect knowledge of b will lead to an approximate so-
lution for the input signal, 0h t( , ),͠ whose Laguerre coefficients, a ,͠ n lie in
vector a͠ . In matrix form, this can be written by distinguishing the
(unknown) true matrix, B, from the approximate matrix, ∼B, resulting
from our imperfect knowledge of b. The matrix inverse problem that is
being solved is thus

= ∼c Ba.͠ (10)

Parseval’s equation (Churchill, 1963, p. 61) states that if a function, f(t),
has a representation in orthogonal basis functions, ψn(t), on an interval
(α, β), such that = ∑f t q ϕ t( ) ( ),n n n then it is true that

∫ = ∑f t dt q( ( ))α
β

n n
2 2. By making the definition = −0 0f t h t h t( ) ( , ) ( , ),͠

it follows that = −q a a ,͠n n n and we immediately are able to express the
squared error of our source history estimate in vector form, using
Eq. (2), as

∫= − ≈ −
∞

0 0h t h t dt a aϵ ( ( , ) ( , )) ,͠ ͠
0

2
2
2

(11)

with equality in the limit N→∞. Although the error introduced by
spectral leakage (i.e., series truncation) has been recognized as im-
portant in some geophysical inversion (Sneider and Trampert, 1999),
many transfer functions and input signals are smooth in hydrology, and
the approximate equality will be taken to be exact in subsequent ana-
lysis. The error analysis can thus be performed in the matrix domain.

Because∼B and B are invertible, there is a unique solution to Eq. (10)
and thus:

− = − ∼−a a I B B a( ) .͠ 1
2 2 (12)

Because I,∼B, and B are LTT, it follows from application of Lemma 1 and
Lemma 2 (see Appendix A) that − ∼−I B B1 is an LTT matrix. Let −b ,͠ 1 b,
and e be the vectors of coefficients on the diagonals and sub-diagonals
of the LTT matrices∼−B ,1 B, and − ∼−I B B,1 respectively, indexed as in the
proof of Lemma 2. For clarity, we mean that b0 equals the identical

elements on the diagonal of B, b1 equals the identical elements on the
first sub-diagonal of B, and so on. From inspection of Eq. (8), = bb0 0
and = −b bb1 1 0. By applying Eq. (A.1) with A defined as the upper
right 2× 2 sub-matrix of ∼B, it follows immediately that =−b͠

b
1

0
1
͠ 0
and

= −− −b͠ b b

b

1
1

͠ ͠

͠
1 0

0
2 . We may then apply Eq. (A.5) to determine the diagonal

and sub-diagonal elements of the LTT matrix ∼−B B1 . It is then trivial to
determine the elements of the LTT matrix − ∼−I B B,1 whose elements are
contained in vector e. In particular,

= − b
b

e 1 ͠0
0

0 (13)

⎜ ⎟= ⎡
⎣
⎢ − ⎛

⎝
⎞
⎠
⎤
⎦
⎥b

b b b
b

e 1 .͠
͠

͠1
0

1 1
0

0 (14)

Note that these elements (like all of e) are zero when =∼B B.
The following lower error bound follows from consideration of the

first element of − ∼−I B B a( )1 :

− ≤ −a b
b

a a1 ,͠ ͠0
0

0
2

(15)

In the useful special case in which the input signal is an arbitrary de-
caying exponential (with rate constant 1/2T, noting that T is a free
parameter), the only nonzero term of its Laguerre series is a0 and a
lower bound on the relative error follows immediately:

− ≤ −b
b

a a
a

1 .͠
͠0

0

2

2 (16)

The significance of these results is that we are able to bound the L2 error
of the reconstruction of h(0, t) (essentially the squared error, integrated
over time) using only the most significant components of the Laguerre
expansions of the true transfer function, b(0, t) and the approximately
known transfer function 0b t( , )͠ . We may have some prior knowledge of
possible transfer function shapes and to be able to qualify this quantity
despite not having exact knowledge of the true transfer function.

The coefficient b0 is computed

∫=
∞ −b e b t dt(0, ) ,

t
0 0

2 (17)

and similarly for b͠0. It should be clear that if b(x, t) and b x t( , )͠ have
different shapes (particularly if b x t( , )͠ represents transmission through
a homogeneous medium, and the true Green’s function, b(x, t), char-
acterizes a medium that is heterogeneous or homogeneous with sub-
stantially different properties) then it is possible to have ≫b b/ 1͠0 0 . In
such cases, the error due to fitting of the inaccurate model overwhelms
the signal and the errors of signal measurement (detection).

It is generally possible to use the approach developed here to gen-
erate lower error bounds relating the first k terms of the sequences {an},
{bn}, and b{ },͠ n for arbitrary k, depending on the amount of information
available about the transfer function. For instance, for =k 2:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

− ⎞
⎠

+ ⎛

⎝
⎜

⎡
⎣
⎢ − ⎛

⎝
⎞
⎠
⎤
⎦
⎥
⎞

⎠
⎟ +

⎛
⎝

− ⎞
⎠

≤ −a b
b

a
b

b b b
b

a b
b

a a1 1 1 .͠ ͠
͠

͠ ͠ ͠0
0

0

2

0
0

1 1
0

0
1

0

0

2

2
2

(18)

It is also possible to derive an upper bound, which does not depend on
{an}, but which requires =k N terms of the other sequences. This is
seen in the next section.

2.3. Effect of imperfect model: multiple observation locations

In the case ofMmonitoring locations, the problem is generally over-
determined, and instead of directly computing the inverse, one may
define the optimal solution, a,͠ as the one which minimizes the sum of
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squared residuals at each observation location, i.e., satisfies the fol-
lowing condition:

∑ ∑− = −∼ ∼
= =

c c c cmin .
l

M

l

M

l l
a

l l
1 2

2

1
2
2

͠ (19)

This problem may be placed in a matrix form by defining the block
diagonal matrices

=
⎡

⎣

⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎤

⎦

⎥
⎥
⎥

⊗B

B
B

B

0 0
0 0

0 0

,

1

2

M (20)

=

⎡

⎣

⎢
⎢
⎢
⎢

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎤

⎦

⎥
⎥
⎥
⎥

∼

∼
∼

∼
⊗B

B
B

B

0 0
0 0

0 0

.

1

2

M (21)

It is also useful to define the following block-columnar matrix of M,
N×N identity matrices:

=
⎡

⎣

⎢
⎢
⎢
⋮

⎤

⎦

⎥
⎥
⎥

D

I
I

I

.

N

N

N (22)

Using this notation, and recalling that for any vector v, =v v v,T
2
2 the

LHS of Eq. (19) can be represented as:

∑ − = − +∼ ∼ ∼∼
=

⊗ ⊗ ⊗ ⊗ ⊗ ⊗c c a D B B Da a D B B Da a D B B Da2 .͠ ͠ ͠
l

M

l l
T T T T T T T T T

1
2
2

(23)

By definition, a ,͠ must minimize this quantity, implying that it is at a
location where the vector derivative of the RHS of Eq. (23) with respect
to a͠ is zero. Differentiating,

∑ − = − +∼ ∼ ∼∼
=

⊗ ⊗ ⊗ ⊗
d

d
d

da
c c

a
a D B B Da a D B B Da[ 2 ]

͠ ͠
͠ ͠ ͠

l

M

l l
T T T T T T

1
2
2

(24)

= − +∼ ∼ ∼
⊗ ⊗ ⊗ ⊗a D B B D a D B B D2 2 ͠T T T T T T

(25)

The optimal solution will be when this quantity equals zero, which may
be seen by inspection to be satisfied when

= ∼
⊗
−

⊗Da B B Da,͠ 1
(26)

and this will be the only solution in the general case of full rank ∼⊗B D.
Because = MD D I ,T

N we arrive at the solution

= ∼
⊗
−

⊗M
a D B B Da1 .͠ T 1

(27)

It follows from the definition of D that

− = −
M

a a Da Da1 ,͠ ͠2 2 (28)

from which it follows from Eq. (26) that

− = − ∼
⊗
−

⊗M
a a I B B Da1 ( ) .͠ MN

1
2 2 (29)

This is of a superficially similar form to Eq. (12), however the matrices
∼
⊗B and B⊗ are merely triangular, but not LTT, and so Eq. (29) cannot be

analyzed in the same way. Nevertheless, by inspection and use of the
rules for matrix block multiplication, it is apparent that

∑− = − ∼

=

−

M
a a I B B a1 ( ) .͠

l

M

N l
1

l2
1

2
(30)

This is simply the average of the individual model errors if only a single
monitoring location were to be used (see Eq. (12)), implying that the

lower error bound theory developed above can be carried over
straightforwardly. If a is viewed as a random variable, the expected error
is also not reduced by incorporating additional measurements, unlike the
scenario of uncorrelated random noise.

One can also derive an upper bound on the relative error of a͠ from
Eq. (29) using the definition of the induced matrix 2-norm ‖ · ‖2, the fact
it is always less than or equal to the Frobenius norm, and the fact that

=Da aM
1

2 2. From this, it follows that

− ≤ − ≤ −∼ ∼
⊗
−

⊗ ⊗
−

⊗
a a

a
I B B I B B ,

͠
FMN

1
MN

12

2
2

(31)

where ‖ · ‖F represents the Frobenius norm. Practically, this depends on
the full sets of coefficients {bn} and b{ },͠ n which is a greater information
demand than for the lower bounds, which only involve relationships of
the dominant components.

Naturally, Eq. (31) applies to single measurement location re-
construction as a special case. In this case, the Frobenius norm can be
computed symbolically using the entries in e, and it may be possible to
derive an estimate of the upper bound in terms of only dominant
components, as in the case of the lower bound.

3. Monte Carlo study: reconstruction of hydraulic transients

In this section, the inference of a hydraulic head transient history
along an aquifer boundary (which might be interpreted as a river stage
transient, where the river is in a hydraulic connection with the aquifer)
based on a time series of measurements made at a single nearby
groundwater monitoring well is considered. This study represents a
demonstration of the ideas developed above, and also may be of in-
dependent interest.

An ensemble of hydraulic transients, {hi(x, t)}, “observed” at a fixed
x are considered. These are all generated by convolving a single input
transient, h(0, t), with a number of equally-likely transfer functions
corresponding to complex groundwater models, {bi(x, t)}}. Each of
these “true” groundwater models may be equally well represented by
the same simplified interpretive groundwater model, which corre-
sponds to the transfer function xb t( , )͠ . We invert the ensemble of
output signals using xb t( , )͠ to generate an ensemble of reconstructed
input signals, 0h t{ ( , )},͠ i and examine the reconstruction error, ϵ. Note
that rather than considering a variety of interpretive models and a
single true model, as in a traditional model calibration exercise, we are
here considering the converse situation.

3.1. Procedure

It is assumed here that the specific storage is known and spatially
uniform, and that the log hydraulic conductivity is defined by a multi-
Gaussian spatially random field whose mean is known, but which is
otherwise unknown. Assuming flow is described by the groundwater
flow equation on this heterogeneous conductivity field, b(x, t) is the
head history at a fixed location, x. A natural interpretive model is se-
lected: the same groundwater flow equation, but solved on a homo-
geneous conductivity field that is everywhere equal to the mean of the
true log hydraulic conductivity field.

The study is then performed according to the following basic pro-
cedure: First, a true, exponentially decaying, transient in the river stage
on the aquifer domain boundary is specified, along with the location of
a monitoring well at which a time series of head measurements is to be
made. The accuracy of reconstruction of the river stage transient from
the transient at the monitoring well is studied, given an overly smooth
model of the subsurface. For simplicity, the free parameter, T, is se-
lected so that the Laguerre decomposition of the true transient using Eq.
(4) yields the vector = < ⋯ >a 1, 0, 0, ,0 . Next, 500 two-dimensional
subsurface realizations are generated with different heterogeneous log-
hydraulic conductivity fields, all of which have the same multi-
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Gaussian statistical correlation structure and geometric mean con-
ductivity. Subsequently, using finite element analysis, head time series
are computed at the monitoring well for each of the 500 subsurface
realizations resulting from a Dirac head impulse at the river stage. Each
impulse response (Green’s function) is decomposed as a vector of La-
guerre coefficients, b. Again, using finite element analysis, the impulse
response at the well is computed, but assuming a uniform hydraulic
conductivity field with the same geometric mean hydraulic

conductivity as used in each of the heterogeneous realizations. This
impulse response is decomposed as a vector of Laguerre coefficients, b͠.
Finally, for each realization, the reconstruction error, − ∼−I B B a( ) ,1

2 is
computed and compared with the analytical lower bound in Eq. (16).
Statistics about this quantity are tabulated so that its relationship to
qualitative features of the inverse model discrepancy may be studied.

Both the true solution and the interpretive model are described by
the following system of equations:

q(x, t) · n(x) = 0

h(x, t) = 0

q(x, t) · n(x) = 0

h(x, t) = δ(t)

Fig. 1. Top: the flow domain and the observation location (black dot). Bottom: example of a realization of ln [K(x)] field along with the mesh used to numerically solve Eq. (37).

Fig. 2. Hydraulic head transient responses at
the point =x y( , ) (4, 2) due to an impulse at
the boundary =x 0. Impulse responses—i.e.,
b(4, 2, t)—for 500 random realizations of the
hydraulic conductivity field are shown (solid,
colored lines), along with the response from
the interpretation model—i.e., b t(4, 2, )͠

—with spatially uniform hydraulic con-
ductivity, = −xK LT( ) 1 [ ]1 (dashed, white
line).
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∂
∂

+ ∇ = ∈x q x x DS h t
t

t( , ) · ( , ) 0,s (32)

= − ∇ ∈q x x x x Dt K h t( , ) ( ) ( , ), (33)

solved subject to the initial and boundary conditions

= ∈x x Dh ( , 0) 0, (34)

= ∈x xh t c t( , ) ( ), ΓL (35)

= ∈x xh t( , ) 0, ΓR (36)

= ∈q x n x xt( , )· ( ) 0, ΓS (37)

where the only difference enters due to different choices for K(x). In the
above equations, x [L] represents the location, t [T] represents time,

−S [L ]s
1 represents specific storage, h [L] represents hydraulic head,
−q [LT ]1 represents groundwater flux, −K [LT ]1 represents hydraulic

conductivity, and n [1] is the outward-facing unit normal vector. For
vector quantities, the units reported are for each of their components.

More concretely, a two-dimensional model of saturated flow in a

heterogeneous porous medium is defined over the rectangular domain
= ×D L L(0, ) (0, ),1 2 where =L L10 [ ]1 and =L L4 [ ]2 (L is any con-

sistent length unit), and specific storage, =S 1s (Fig. 1). ΓL represents
the left boundary of D (at =x 0), ΓR represents the right boundary of D
(at =x 10), and ΓS represents the union of the other two sides of D (at
=y 0 and =y 4, respectively). Let =x xY ω K ω( , ) ln[ ( , )] be a random

field, where ω belongs to the space of random events Ω. Assuming Y(x,
ω) is Gaussian with zero mean and a separable exponential covariance
function,

= = ⎡
⎣⎢
− − −

− ⎤
⎦⎥

x xC C x y x y σ x x
η

y y
η

( , ) ( , ; , ) exp ,1 2 Y1 1 2 2
2 1 2

1

1 2

2 (38)

where =σ 2,Y
2 =η 41 and =η 22 are the variance and the correlation

lengths of the random field.
For the Monte Carlo study, a set of 500 realizations of b(t) is generated

by setting =c t δ t( ) ( ), generating 500 ln [K(x)] fields Fig. 1, bottom),
using a 100-term truncated Karhunen-Loève expansions (KLE) to represent
the field as weighted sums of predefined spatially variable orthonormal
functions (Zhang and Lu, 2004), and solving Eqs. (32–37) on each. The

Fig. 3. Reconstructions of the boundary
condition resulting from application of the
interpretation model to output from the 500
simulations performed in heterogeneous
aquifers (colored lines) along with the ac-
tual boundary condition used in the simu-
lations (dashed white line). Responses are
partitioned according to whether true peak
hydraulic head is earlier (top axes) than
assumed by the interpretive model, or later
(bottom axes).
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numerical solution is evaluated using the FEniCS Logg et al., 2012)
package to discretize Eqs. (32–33), using finite element methods in space
and an implicit Euler method in time. Simulated hydraulic head data is
recorded at the point (4, 2) for each realization of K(x) (Fig. 2), and the 50-
term LEM is used along with =T T100 [ ] to reconstruct the time series of
hydraulic head values on the left boundary (Fig. 3). The same procedure is
followed to generate the interpretive model, b t( )͠ except =xK ( ) 1 for all x
(i.e., =xY ( ) 0 for all x) is employed.

3.2. Discussion of results

Given that the random hydraulic conductivity fields chosen for the
forward modeling were only moderately heterogeneous, and that
choice of a spatially uniform interpretive model is a natural response to
unresolved heterogeneity, the wide array of possible reconstructions is
notable. In particular, a bifurcation of the response classes was noted
based on whether the peaks of the forward model impulse response, b,
preceded or lagged that of the interpretive model, b͠ . In cases in which

the interpretive model predicted a faster response than existed in rea-
lity, the reconstruction of the decaying exponential boundary condition
was typically smooth, with its peak at a time significantly greater than
zero: the delayed reconstruction of the boundary condition compen-
sated for the over-rapid model. However, because signal causality is
enforced, the model cannot respond to an earlier-than-anticipated ar-
rival with a non-zero signal at negative time. Instead, the optimal re-
construction features a large peak at time zero, followed by decaying
corrective oscillations. This bifurcation of behavior is potentially useful
as a model diagnostic tool that does not require any a priori knowledge
of the true model (other than that it possesses a unimodal structure):
multiple candidate interpretive models could be tested with peaks at
different locations, and the true peak location pinpointed by the dis-
appearance of the spurious oscillations.

In Fig. 4 (top), the empirical pdf for the L2 error, normalized by the
L2 norm of the signal being reconstructed, is shown. It is apparent that
even for moderate heterogeneity, reconstruction error on the same
magnitude as the signal itself is to be expected. In Fig. 4 (bottom), the

Fig. 4. Top: empirical pdf of normalized L2

estimation error of =h x y t( 0, , ) from the
ensemble of 500 realizations. Bottom:
scatter plot of relative estimation error
against lower error bound.
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L2 error of approximation in the reconstruction of the boundary con-
dition for each of the 500 realizations is plotted against the zero-order
lower error bound in Eq. (16).

4. Summary and conclusion

Systematic model error was considered in the context of inverse
problems in systems whose output signal is determined by convolution
of an input signal with a transfer function, or impulse response, which
describes system behavior. Using a generalized Fourier series expansion
in Laguerre basis functions, it was possible to translate the signal re-
construction inverse problem into a matrix inverse problem whose
structure may be analyzed using some classic, and some apparently
new, results in matrix algebra. It is thus seen possible to place upper
and lower bounds on the L2 signal reconstruction error as in terms of
the transfer function infidelity. It was also observed that the use of
additional measurement locations is not expected to improve re-
construction performance in the face of model error.

The inverse problem of recovering river level history from remote
measurements at a well, which has a convolution structure, was chosen
for Monte Carlo study. Forward predictions were generated by solving
the groundwater flow equation on a mildly heterogeneous hydraulic
conductivity field, and these were interpreted using the groundwater
flow equation, assuming a homogeneous hydraulic conductivity field.

The L2 reconstruction error, ϵ, for the river level was established for all
realizations, and this error was compared with the error bound devel-
oped above. The simple lower bound derived here Eq. (16) was found to
be informative regarding the reconstruction error in the specific reali-
zations. A qualitative bifurcation in the reconstructed signal was dis-
covered, depending on the location of the peak of the interpretation
model transfer function relative to that of the true model. Looking
forward, this may prove to be a useful tool for transfer function iden-
tification.

The Laguerre expansion approach, because of its high degree of
structure, relative simplicity and computational efficiency, may also
prove to be a profitable foundation for further analysis of model error.
The matrix transformation of the inverse problem developed here can
be also applied for other problems of interest such as groundwater
contaminant transport, propagation of low-frequency seismic waves,
heat flow, infectious disease transmission, population dynamics,
spreading chemical/biochemical substances in atmosphere, and many
others.
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Appendix A. Two results on triangular Toeplitz matrix manipulation

Here, we establish two apparently original results: that the inverse of a (lower or upper) triangular Toeplitz matrix is itself a (lower or upper)
triangular Toeplitz matrix, and that the product of two (both lower or both upper) triangular Toeplitz matrices is similarly a (lower or upper)
triangular Toeplitz matrix. Without loss of generality, we assume the matrices are lower triangular Toeplitz (LTT) in both proofs.

Lemma 1 (Inversion of triangular Toeplitz matrices). If M is a triangular Topelitz matrix, then −M 1 is also triangular Topelitz.

Proof. Let MN be an N×N LTT matrix, N arbitrary, and let −MN
1 be its inverse. It may be shown by induction that −MN

1 is LTT. This argument makes
repeated use of the following identity for block-triangular matrices (Bernstein, 2005, p. 71):

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢−

⎤
⎦⎥

−
−

− − −
A
C D

A
D CA D

0 0 ,
1

1

1 1 1 (A.1)

where A, 0, C, and D are compatibly-shaped sub-matrices.
The base case is trivial: note that that for any 2×2 LTT matrix, M2, Eq. (A.1) implies directly that −M2

1 is LTT.
For the inductive step, assume that it has been established for − × −N N( 1) ( 1) LTT matrices that their inverses are LTT. Define −MN 1 to be the

sub-matrix consisting of the first −N 1 rows and first −N 1 columns of an arbitrary LTT matrix, MN. Note that −MN 1 is also LTT, and by our
inductive assumption so is −

−MN 1
1 . It is valid to apply Eq. (A.1) in two different ways. First, make the assignment ≡ −A MN 1 and apply Eq. (A.1). This

implies that −A 1 is LTT, and also that −MN
1 is lower triangular. This analysis has accounted for all but the N-th row of −MN

1. To see that the constant
descending diagonals continue into the bottom row, note that the sub-matrix consisting of the last −N 1 rows and last −N 1 columns of MN is also

−MN 1. Make the assignment ≡ −D MN 1 and apply Eq. (A.1) again, implying that −D 1 is LTT, and also that =− −A D1 1 (Note that these are both
− × −N N( 1) ( 1) matrices which are largely overlapping, and do not participate in the same block partitioning of −MN

1). It is thus shown that all
descending diagonals of −MN

1 are constant (the single element −M( )NN
1

1 can have any value without affecting this). It has thus been shown that, subject
to our inductive assumption, −MN

1 is LTT for arbitrary LTT MN.
By combination of base case and inductive step it follows that if MN is an LTT N×N matrix then so is −M ,N

1 ∀N≥ 2. □

Lemma 2 (Multiplication of triangular Toeplitz matrices). If F and G are triangular Topelitz matrices with the same dimensions, then FG is a triangular
Topelitz matrix.

Proof. For any two N×N matrices F and G, it is true that the element = ∑ =FG F G( )ij k
N

ik kj1 . If the matrices are also LTT, it follows that

= ⎧
⎨⎩

<
≤−

i k
i kF f

0
ik

i k (A.2)

= ⎧
⎨⎩

<
≥−

k j
k jG g

0
,kj

k j (A.3)

where fn and gn are the elements on the n-th (sub-)diagonal of F and G, respectively (with the main diagonal having index 0, the first sub-diagonal
having index 1, and so on). Then it follows that

∑=
=

− −FG f g( )ij
k j

i

i k k j
(A.4)
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∑=
=

−

− −f g .
k

i j

i j k k
0

( )
(A.5)

(FG)ij is thus a function only of −i j and is zero for i< j. Thus, FG is LTT. □
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